Electromagnetic Launcher to Mars

Cheryl Blomberg
Zamir Zulkefli
Spencer Rich
Alex Perez
Charles Fisk
Theodore Hale
Steven Howe

Presentation Outline

- Project Background
- NTR Comparison
- Project Specifics and Constraints
- Launcher Infrastructure
- Launcher Design Options 1-5
- Comparisons
- Discussion
- Conclusion

Project Background

- NTR to Mars
 - Enabling technology for human exploration of Mars
 - The mass of the propellant for the entire NTR mission must be carried on-board
 - Incremental payload increase = significant structural and propellant mass increases
 - Creating and sustaining an outpost on Mars will require frequent cargo launches

CENTER FOR

Project Background

- Design an electromagnetic lunar launcher as an alternative method to perform interplanetary transfer
 - Requiring electricity for launch instead of propellant
- Launch cargo to Mars
 - Minimal on-board propellant and structural requirements
 - Incremental increase in payload = incremental increase in power requirements
 - Ability to increase frequency of launch to meet mission requirements
 - Flexible for other interplanetary launches in the future

RESEARCH

Interplanetary Lunar Launcher

NTR Comparison

- Payload: 100 tons
- Fuel: 198 tons
 - Liquid Hydrogen fuel
 - Must carry all fuel to get from LEO to Mars orbit
- TOF to Mars: 100-140 days
- IMLEO = 394-429 metric tons
- $\Delta V = 8.4-9.1 \text{ km/s}$

Electromagnetic Lunar Launcher Project Specifics

- Payload: 100 tons
 - Dimensions:
 - Diameter=8.5 m
 - Length=26 m
 - Assumed 100 tons of liquid hydrogen
 - Launched from Earth to LEO with NTR and NTR used to get to LLO
- Lunar Restricted Forces: 15 G's
 - Maximum ΔV=5 km/s
- Track Length: 88 km

Project Specific - contd

- Timeline is 50 years out
- Lunar base exists
- Consistent need for cargo launches to Mars
- Commercialization of Earthbased launches

- Orbital Mechanics Assumptions
 - -NTR ISP of 850 s
 - NTR has 214 N of thrust
 - Impulsive burns for entrance into Martian orbit
 - Once a day launch

Launcher Infrastructure

- Surface Power
 - High Temperature Gas Reactor ~30 MWe
 - System mass ~150 metric tons
- Energy Storage
 - Aluminum electrolytic capacitors
- Location
 - Far side of the moon

Design Options

- Option 1: Maglev
- Option 2: In-Situ Maglev
- Option 3: Linear Synchronous Motors
- Option 4: Conducting Glass Road
- Option 5: Coil Launcher

Option1: Maglev

Levitation System

Electromagnetic Suspension (EMS)

 Electromagnets located on the sled

- Coils line the track
- Interaction results in constant levitation
 - Airgap between 1-10 cm

Electrodynamic Suspension (EDS)

 Superconducting magnets on the sled

- Electromagnetic coils line the track
- Must have wheels to move sled until lift-off speed is reached

Option 1: Maglev

- Design based on current technology
 - German Transrapid
 - South Korean UMP
 - Japanese MLX
- Everything made on Earth and sent to LLO
 - Track: aluminum
 - Sled: aluminum
 - Structure: carbon steel

Option 2: In-Situ Maglev

Option 2: In-Situ Maglev

- Certain components or materials still on Earth
 - Superconducting magnets
 - Reactors

- The rest made from lunar materials
 - –Sled: aluminum
 - –Track: iron
 - Structure: sulfur concrete

Option 3: Linear Synchronous Motors

Lines: electric potential

Color: magnetic flux density (blue to pink, low to high)

How LSM Work

- Contains a magnetic source within the motor
- Thrust force is produced by interaction between the armature current and magnetic field

Option 4: Conducting Glass Road

- Conductive glass roadway
 - Add in-situ aluminum to make the road conductive
 - Sinter roadway to make regolith into glass
- Superconducting magnets, receiver, radiators, and cargo on sled
- Power beaming to power sled
 - Entire amount of power must be beamed simultaneously
 - Laser must have line of sight to entire track

Sintering

- Create a glass roadway using microwaves
 - Glass is stronger if the process is performed anhydrously
- Use for the base/structure

Power Beaming

- Need to beam ~268 GW power to the sled
 - 10.72 million lasers
 - 50yr out technology
 - Theoretical Maximum Efficiency: 50%
 - for light conversion
 - Large efficiency drop-off due to laser diffraction
 - 80% in 12 km

Emitter Radius: 21 m

Option 5: Coil Launcher

Option 5: Coil Launcher

- Characteristics:
 - Electromagnetic coils
 - In-situ materials
 - Simplified track design
 - Modular and flexible design
 - Reusable launching sled

- Design specifics:
 - Shipped mass 620 tons
 - Coil diameter 12.0 m
 - Coil spacing 2.2 m

Design Options Recap

Option	Structure Design	In-Situ Resources	Key Advantages and Disadvantages	
Maglev 1	Track	*	Proven Earth Technology	Everything Shipped
Maglev 2	Track	✓	Proven Earth Technology	Reduced Mass
LSM	Planar (minimal track)	✓	Reduced Structure	Complexity of Control
Conductive Glass Road	Planar Road	✓	Minimal Structure	Far Future Technology
Coil Launcher	Circular Coils	✓	Positions Cargo in Center	Complexity of Control

Mass and Launch Comparison

Option	Shipped Mass (tons)	Total Propellant Mass (tons)	Number of Equivalent NTR Missions
Maglev 1	44,797	219,751	1,112
Maglev 2	961	4,945	25
LSM	710	3,715	19
Conductive Glass Road			
Coil Launcher	620	3,276	17

Cost Comparison

Option	Launch Cost (\$ Billions)	Extraction Shipping Cost (\$ Billion)	Total Shipping & Launch Cost (\$ Billion)
Maglev 1	\$ 261.32		\$ 261.32
Maglev 2	\$ 5.77	\$ 63.61	\$ 69.38
LSM	\$ 4.26	\$ 63.61	\$ 67.87
Conductive Glass Road			
Coil Launcher	\$ 3.72	\$ 63.61	\$ 67.33

Conclusions

- Advantages:
 - Variable ΔV
 - Additional launch missions
 - Launcher is more sustainable
 - After initial 17 payoff missions to Mars, uses less propellant per mission thereafter
 - Modular
 - Can add track/coils for longer/farther interplanetary missions in the future
 - If a small portion fails, it does not result in catastrophic failure of the whole system

Conclusions

- Challenges:
 - Significant upfront launch costs
 - Availability of lunar infrastructure
 - Significant investment in effort and time

Acknowledgements

- Dr. Steven Howe
- Center for Space Nuclear Research
- Center for Advanced Energy Studies
- Idaho National Labs
- United States Department of Energy
- University of Colorado Boulder
- University of Washington
- Penn State University
- Case Western Reserve University
- Tomball High School

Questions?

Interplanetary Lunar Launcher

References

- University of Washington Space Systems Design Team. "MAVERIC: Mission for the Acquisition of Valuable Extraterrestrial Resources for Industrial Commercialization." RASC-AL Forum. 2012.
- 2. Hickman, J.M. and Bloomfield, H.S., "Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory. 24th Intersociety Energy Conversion Engineering Conference (IECEC-89) Vol. 1, IEEE, New York, NY pp. 1-5
- Hatton, S.A. and El-Genk, S.; "Sectored Compact Space Reactor (SCoRe) concepts with a supplementary lunar regolith reflector"; Progress in Nuclear Technology 51 (2009) 93-108
- NASA, Lewis Research Center; "Lunar Electric Power Systems Utilizing the SP-100 Reactor Coupled to Dynamic Conversion Systems", NASA Contractor Report CR-191023, March 1993
- Maise, G., Powell, J. and Paniagua, J.; "SUSEE: A Compact, Lightweight Space Nuclear Power System Using Present Water Reactor Technology", Space Technology and Applications International Forum – STAIF 2006, pp 308-318

- Juhasz, A.J. and Peterson, G.P.; "Review of Advanced Radiator Technologies for Spacecraft Power Systems and Space Thermal Control" NASA Technical Memorandum 4555, June 1994.
- 7. Poston, D.I., Mason, L.S. and Houts, M.G.; "Radiation Shielding Architecture Studies for NASA's Lunar Surface Power System", Proceedings of Nuclear Technologies for Space 2009, Jun 2000
- 8. Webb, B.J. and Antoniak, Z.I.; "Rotating Bubble Membrane Radiator for Space Applications"; Proceedings of the 21st Intersociety Energy Conversion Engineering Conference: IECEC '86, Vol. 3, pp 1881-1885.
- 9. White, A.K.; "Liquid Droplet Radiator Development Status"; NASA Technical Memorandum 89852, 1987.
- 10. Blomberg, P.F. Personal Communication.12 June 2012.
- 11. Lee et al. "Review of Maglev Train Technologies." IEEE Transactions on Magnetics. Vol. 42, No. 7, pp 1917-1925, 2006. doi 10.1109/TMAG.2006.875842

CENTER FOR

- 12. Toutanji, H. and Grugel, R. "Sulfur 'concrete' for lunar applications—Sublimation concerns." Advances in Space Research, Vol 41, Issue 1, pp 103-112, 2008. doi 10.1016/j.asr.2007.08.018
- 13. "The Electromagnetic Fields from a Railgun." COMSOL. 2012 Gieras et al. *Linear Synchronous Motors: Transportation and Automation Systems*. 2nd Ed. New York, NY: CRC Press. 2012.
- 14. Nugent Jr., T.J. and Kare, J.T. "Laser power beaming for defense and security applications." Society of Photo-Optical Instrumentation Engineers. LaserMotive. 2011.
- 15. Taylor, L.A. and Meek, T.T. "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice." Journal of Aerospace Engineering. 2005. doi 10.1061/(ASCE)0893-1321(2005)18:3(188).
- 16. Sprangle et al. "High-Power Fiber Lasers for Directed-Energy Applications." NRL Review. pp 81-99. 2008.
- National Aeronautics and Space Administration (NASA), "Space Resources and Space Settlements", NASA SP-428, Washington DC, 1979.

- 18. O'Neill, G.K. and Kolm, H.H.; Technical Note: Mass Driver for Lunar Transport and as a Reaction Engine, The Journal of Astronautical Sciences, Vol. 25, No. 4, pp. 349-363, October 1977.
- Kaye, R.J. and Mann, G.A., "Reliability Data to Improve High Magnetic Field Coil Design for High Velocity Coilguns", SAND2003-3458, Albuquerque, NM, 2003.
- 20. Shope et al, "Results of a Study for a Long Range Coilgun Naval Bombardment System", 2001

